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1. Introduction

Global warming, driven primarily by rising carbon 
emissions, poses a significant threat to human habitats 
and food security due to its potential to cause frequent 
droughts, glacial melt, rising sea levels, and extreme 
weather events. According to BP's Statistical Review of 
World Energy (BP, 2023), China has been the world's 
largest carbon emitter since 2005, surpassing the United 
States. Despite a brief decline in 2020, global carbon 

emissions are on the rise again.
In response, the international community has initiated 

collective actions to combat carbon emissions and promote 
sustainable development. Key initiatives include the 1997 
Kyoto Protocol, which imposed legal obligations to reduce 
emissions on developed countries following the principle 
of common but differentiated responsibilities, and the 2015 
Paris Agreement, aiming to limit global temperature 
increases to 2°C above pre-industrial levels, with an ideal 
target of below 1.5°C. China, as a major emitter, primarily 
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produces carbon through fossil fuel use in industrialization. 
The country's ineffective development strategies and poor 
industrial planning have exacerbated this issue. However, 
at the 2020 United Nations General Assembly, China 
committed to peaking carbon emissions by 2030 and 
achieving carbon neutrality by 2060. Subsequent measures 
include the implementation of a carbon emissions trading 
pilot in 2013 and a national trading market in July 2021, 
initially focusing on power generation. In August 2022, 
Chinese agencies released a plan for technological 
innovations to support these goals, emphasizing green 
technology research and development.1)

Furthermore, amidst the information revolution, China's 
digital industry is experiencing rapid expansion. Inter-
regional cooperation is steadily growing stronger. The 
China Digital Economy Development Report (CDEDR, 
2023) showed that the digital economy reached 50.2 
trillion yuan in 2022, accounting for 41.5% of the national 
GDP. The report outlines that the digital economy 
consists of four key components: digital industrialization, 
industrial digitalization, digital governance, and data 
valuation. Among these components, the software and 
information technology services sector, a high-value-added 
tertiary industry, is a crucial part of digital industrialization. 
This growth, along with the emergence of new business 
models, is reshaping industrial structures. Digital technologies 
also present opportunities for reducing carbon emissions, 
making it crucial to understand the relationship between 
digital industrialization and emissions for achieving China's 
carbon goals. 

To this end, our study examines the impact of the 
digital economy on carbon emission intensity, with a 
particular focus on the impact of digital industrialization 
on regional carbon emissions in China and the potential 
spatial correlations between these regions. It also aims to 
provide insights to help China achieve its strategic goals 
of reaching the "carbon peak" and "carbon neutrality", 
while promoting low-carbon digital industrialization. The 
paper is organized as follows: Section 2 reviews the 
previous literature, Section 3 describes the research 

methods and data, Section 4 presents the empirical 
findings, and Section 5 concludes the study.

2. Literature review

The rapid expansion of industrial scale and extensive 
use of fossil fuels have led to significant environmental 
issues, notably the emission of greenhouse gases like 
carbon dioxide. Research on carbon emissions falls into 
two categories: studies focusing on measuring and 
analyzing emissions across regions and sectors, and those 
discussing the factors influencing emissions. Understanding 
these factors is crucial for managing carbon reduction 
efforts. Literature reviews show that scholars use methods 
like index decomposition and econometric modeling to 
assess the impact of economic scale, technological 
innovation, population, industrial structure, and energy 
consumption on carbon emissions. Demographic aspects, 
especially urbanization and population size, have been 
significant in previous studies. 

Liu et al. (2011) found that population growth and 
urbanization increase indirect carbon emissions. Dong et 
al. (2016) used spatial econometrics and dynamic panel 
co-integration method to analyze the impact of 
urbanization and energy composition on China's carbon 
emission intensity (CEI), finding both factors help 
mitigate CEI. Zhou et al. (2021) observed that population 
density encourages technological abatement strategies, 
while Ali et al. (2019) noted urbanization's negative 
environmental impact in Pakistan. Hwang et al. (2021) 
employed the Invest carbon model to evaluate the impact 
of urban land use on carbon storage in Korean urban 
areas, finding that urbanization reduces areas functioning 
as carbon sinks. In addition, Studies consistently show 
that economic growth leads to increased carbon emissions 
and energy consumption (Guo et al., 2016; Ali et al., 
2017; Luo et al., 2023). The Environmental Kuznets 
Curve (EKC) hypothesis, suggesting an inverted U-shape 
relationship between environmental quality and economic 
growth, has been a focus of research.

1) https://www.gov.cn/zhengce/zhengceku/2022-08/18/content_5705865.htm
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More recently, technological innovation, energy utilization, 
and industrial development have become key areas of 
research regarding their impact on carbon emission 
intensity. Huang et al. (2018) showed that increased R&D 
expenditure leads to reduced carbon emission intensity, 
based on their analysis of data from 30 Chinese regions. 
Cheng et al. (2018) found that both industrial structure 
and technological innovation affect carbon emission 
intensity, with the latter playing a more significant role. 
Zhang et al. (2017) highlighted the critical role of 
environmental innovation, especially technological innovation 
and energy efficiency, in reducing carbon emission 
emissions in China. In addition, Kim et al. (2019) 
analyzed greenhouse gas emission efficiency (GEE) to 
assess emission reduction policies in Korea. Findings 
indicated industry-wide efficiency gains in 2011 ~ 2012, a 
subsequent decline, and a rebound with the introduction 
of an emission trading scheme. Adedoyin et al. (2020) 
used the fully modified ordinary least square (FMOLS) 
and dynamic ordinary least square (DOLS) techniques to 
analyze the impact of economic growth and R&D in 16 
European Union countries, finding that R&D adversely 
impacts carbon emissions. Ki and Seong (2023) noted that 
despite advances in technology for carbon emission reduction, 
significant mitigation has not yet been achieved.

In the digital industry, there are various hypotheses 
about its potential impact on carbon emissions, focusing 
on digital technological innovation and industrial structure. 
The digital industry, based on digitized knowledge and 
information, can shift from traditional resource-intensive 
models to sustainable, high-quality growth. Xie (2022) 
states that the digital industry, including telecommunications 
and IT services, is more environmentally friendly than 
traditional industries. Li and Sun (2022) found that the 
information and communication industry achieves carbon 
reduction by substituting clean energy for coal-based 
electricity, optimizing electricity supply and demand, and 
improving production efficiency.

However, some studies suggest the digital industry 
might increase carbon emissions. Ge et al. (2022) argue 
that despite focusing on R&D and human capital, the 
digital industry still consumes energy in producing electronic 

components and machinery, leading to increased carbon 
emissions. Jiang (2021) used data from 277 Chinese cities 
to show that the digital economy and carbon emissions 
follow the Environmental Kuznets Curve (EKC), with a 
significant accumulation of carbon dioxide during the 
phase of digital industrialization.

Despite extensive research on carbon emissions, the 
complex relationships between carbon emission intensity 
and its drivers remain unclear. In addition, the academic 
community lacks consensus regarding on the impact of 
the digital economy on carbon emissions, which varies 
according to the definitions and contexts. Moreover, 
empirical research on the potential spatial spillover effects 
of the digital economy across China's regions is scarce. To 
address these gaps, this study applies spatial econometric 
methods to examine how China's digital industry 
development affects carbon emission intensity. This 
research aims not only to deepen understanding of the 
role of the digital industry development in carbon 
emissions but also to provide a basis for policies that 
promote sustainable development and carbon neutrality.

3. Methodologies and data definitions

3.1. Methodologies

3.1.1. Model design

The STIRPAT (Stochastic Impact by Regression on 
Population, Affluence, and Technology) model is pivotal 
for examining the disproportionate effects of human 
activities on the environment. Its ability to incorporate 
additional variables beyond population, affluence, and 
technology is a key aspect. This feature allows for a 
thorough analysis of environmental impacts, highlighted 
by Anser (2019). Our study explores the complex 
relationship between the digital industry development and 
carbon emissions using a two-way fixed effects model 
that accounts for both provincial and temporal variations. 
To evaluate its applicability in this study, we use the 
Hausman test in our empirical analysis. The model is 
defined as follows:
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           
     (1)

In this framework, the variables of the model are 
defined as: i for the provinces, and t for the years in the 
dataset.   indicates the level of carbon emission 

intensity.  measures the development of the 

digital industry2).  consists of control variables 

affecting carbon emissions.  represents provincial fixed 

effects, reflecting time-invariant unique provincial traits.  denotes time-fixed effects that control for changes over 

time.  captures the model's random disturbances.   is 

the intercept term.  is the coefficient that quantifies the 

impact of the digital industry development on carbon 
emission intensity, where  for      indicates the 
coefficients associated with the control variables' influence 
on the carbon emission intensity.

3.1.2. Spatial weight matrix

Spatial weight matrices are critical in spatial analysis, 
particularly for carbon emissions studies. They generally 
include: 1. Adjacency Matrix. This assesses geographical 
adjacency, implying spatial correlation. However, in 
carbon emissions research, the correlation may extend 
beyond mere proximity. 2. Distance Matrix. It measures 
spatial relationships based on physical distance, suggesting 
closer units are more connected. This can miss other 
relevant factors in carbon emissions. 3. Nested Matrix. 
This advanced type integrates multiple proximity levels 
and various factors influencing spatial relationships. 
Addressing the shortcomings of traditional adjacency-
based matrices, our study following Zhang and Hu 
(2020), introduces a geographic-economic nested matrix 
Eq. (2). This novel approach combines geographical 
distances with economic interdependencies, enhancing the 
analysis of spatial correlations in carbon emissions. The 
geographic-economic nested matrix captures the intricate 

interplay of proximity and economic connections, providing 
a richer analytical tool for this field.

  

  ××  ≠

    (2)

Where   refers to the actual geographical distance 

between the centroids of two regions.  defaults to 1, and represents the average per capita GDP of region 
i during the study period, and  represents the 

average per capita GDP of region j during the same 
period. e indicates the natural constant. The geographic-
economic nesting matrix is used in this paper to account 
for the fact that closer geographical proximity between 
regions implies stronger interdependence and correlation 
of socio-economic activities, while greater geographical 
distance diminishes such correlation. This matrix is 
standardized for model computation, ensuring it appropriately 
scales spatial relationships.

3.1.3. Spatial Durbin Model (SDM)

This study employs the Spatial Durbin Model (SDM) 
for its spatial econometric analysis because of its 
flexibility and comprehensive ability to capture spatial 
dependencies. Unlike the Spatial Lag Model or the Spatial 
Error Model, the SDM takes into account both the spatial 
lag of the dependent and independent variables, allowing 
it to comprehensively assess the impact of neighboring 
units' variables on a local unit. Furthermore, the SDM 
distinguishes between direct (local) effects and indirect 
(spillover) effects of explanatory variables, which is crucial 
for understanding regional interdependencies (Golgher and 
Voss, 2016). Recognizing the inherent advantages of the 
SDM, this research initially opts for its adoption as the 
foundational model for empirical analysis. Subsequently, 
it subjects the model to rigorous spatial adequacy tests, 
thereby ascertaining its appropriateness as the optimal 
model for the investigation. As a result, this study 
introduces key components into the SDM framework, 

2) The classification standards are derived from the definition of digital industrialization in the China Digital Economy Development 
Research Report 2023 (CDEDR, 2023).
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including carbon emission intensity, spatial lag terms for 
carbon emission intensity, and spatial lag terms for 
explanatory variables, thereby formulating the following 
SDM for comprehensive analysis and assessment. 

         
   (3) 

In Eq. (3), the components are defined as follows:  
stands for carbon emission intensity and is the dependent 
variable in the model.  is the spatial lag coefficient, 
which indicates the degree of spatial autocorrelation of 
the dependent variable.  is an element of the spatial 

weight matrix W, representing the spatial relationship 
between units i and j.  is the intercept.  is the 
observation of the kth independent variable for spatial unit 
i at time t, indicating the level of digital industry 
development．The model also includes a range of control 
variables, in line with established research methodologies.  are the coefficients for the direct effects of the 
independent variables  .  are the coefficients for the 

spatial lag of the independent variables, reflecting the 
indirect (spillover) effects of  in neighboring units on ．Furthermore,   is the individual fixed effect and 
  is the time fixed effect.   is the error term.

Indeed, considering the geographical unit measurement 
of carbon emission intensity levels in China, it is crucial 
to perform a spatial autocorrelation analysis to gauge the 
spatial dependence of these levels before advancing to the 
SDM for in-depth investigation. The global Moran's I 
index (Moran, 1950) is a valuable tool for this purpose, 
and it can be expressed as follows:

      
    

(4-1)

   （4-2)

Eq. (4-1) is defined as follows: I is the Moran's I 
index, measuring spatial autocorrelation where n=28.3)  and  represent the observations for regions i 
and j, respectively, specifically denoting the carbon 

emission intensity of different provinces in China.   
represents the mean of the observations.  stands for 

the spatial weight matrix, specifically indicating the 
geographic-economic nested matrix. To ascertain the 
presence of spatial autocorrelation in the observations, a 
statistical measure Z is utilized to evaluate the 
significance level of Moran's I index, as shown in Eq. 
(4-2). E(I) represents the expected value of the Moran's I 
index. Var(I) represents the variance of the Moran's I 
index. When ≥  , it is considered that carbon 
emission intensity exhibits spatial autocorrelation at a 5% 
significance level. 

The global Moran's I index is used to analyze the 
overall spatial variation in carbon emission intensity and 
does not elucidate local spatial clustering strength. This 
study will employ the local Moran's I index method to 
analyze the spatial dependence of carbon emission 
intensity between provinces and neighboring provinces. 
Additionally, a Moran's I index scatter plot will be used 
to observe significant clustering categories within 
provinces, as expressed by Eq. (5).

 ′     
 ≠  

(5)

In Eq. (5),  ′ represents the Local Moran's I index, 
which is a local measure of spatial autocorrelation. The 
meanings of the other indicators are consistent with those 
explained in Eq. (4).

3) 28 Chinese provinces excluding Qinghai, Xinjiang, Tibet, Hong Kong, Macao, and Taiwan are analyzed. These provinces are excluded 
because of the lack of data or difficulties in collecting data for these regions in the years under review.
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3.2. Data definitions 

This study examines a dataset covering 30 provinces and 
regions in China from 2005 to 2019. The main objective 
is to analyze the intricate relationship between carbon 
emission intensity and the digital industry development in 
these areas. Our empirical model incorporates key factors 
known to influence carbon emission intensity based on 
previous studies. Table 1 provides a detailed overview of 
the determinants considered in this analysis. 

Data for the explanatory variables are obtained from 
the National Bureau of Statistics of China (NBS, 2023), 

while information on total carbon emissions are from the 
Carbon Emission Accounts and Datasets for Emerging 
Economies (CEADs, 2023). Table 2 displays descriptive 
statistics for all variables at the level of provinces and 
municipalities from 2005 to 2019. To convert the STIRPAT 
model into a standard linear model, a key step in our 
empirical analysis is the logarithmic transformation of all 
variables. This allows for a more precise description and 
analysis of the data, aiding in a better understanding of 
the dynamic relationship between industrial structure and 
carbon emission intensity across different regions in China.

Type Variable Unit Definition measuring method Data source

Carbon emission intensity CEI
tons/10,000

(¥)
total carbon emissions/GRDP

CEADs,
NBS

Degree of digital industry 
development 

DIGITAL %
The proportion of income from the software and 

information services industry in GRDP
NBS

R&D investment RND % total R&D investment by region as a percentage of GRDP NBS

Industrial structure IND
ratio in decimal 

format
the ratio of value added in the tertiary industry to value 

added in the secondary industry 
NBS

Trade openness FOT % total exports and imports as a percentage of GRDP NBS

Working-age population LAB %
those aged between 15 ~ 64 years as a percentage of the 

total population
NBS

Population aging AGING %
the percentage of the population aged 65 and above in the 

total population
NBS

Urbanization URB % share of the urban population in the total population NBS

Economic growth perGDP CNY per capita real GRDP (Constant ¥ 1992) NBS

Table 1. Description and sources of the variables used in the model

Variable Obs Mean Std. Dev Min Median Max

lnCEI 450 0.670 0.600 -1.390 0.690 2.160

lnDIGITAL 441 0.550 1.450 -4.190 0.430 3.780

lnRND 450 -6.970 1.050 -9.020 -7.230 -3.790

lnIND 450 0.070 0.380 -0.640 0.030 1.660

lnFOT 450 2.890 0.980 0.240 2.620 5.150

lnLAB 450 4.290 0.050 4.150 4.290 4.430

lnAGING 450 2.260 0.210 1.700 2.260 2.790

lnURB 450 3.970 0.250 3.290 3.970 4.500

lnperGDP 450 9.680 0.600 7.910 9.710 11.08

Table 2. Summary statistics
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year Moran's I Z-value p-value year Moran's I Z-value p-value

2005 0.290 1.886 0.030 2013 0.282 1.873 0.031

2006 0.260 1.717 0.043 2014 0.302 1.989 0.023

2007 0.272 1.788 0.307 2015 0.305 1.999 0.023

2008 0.284 1.857 0.032 2016 0.287 1.885 0.030

2009 0.301 1.960 0.025 2017 0.253 1.701 0.045

2010 0.333 2.140 0.016 2018 0.204 1.411 0.079

2011 0.281 1.866 0.031 2019 0.179 1.261 0.104

2012 0.295 1.942 0.026 / / / /

Table 3. Global Moran's I index of carbon emission intensity of 28 provinces in China (2005 ~ 2019)

(a) The year of 2005 (b) The year of 2010

(c) The year of 2015 (d) The year of 2019

Fig. 1. Cluster distribution of carbon emission intensity of 28 provinces in China for the years.
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4. Results and discussion

4.1. Global autocorrelation analysis of carbon 

emission intensity

In this study, Moran's I statistics was utilized to assess 
the global spatial autocorrelation of carbon emission 
intensity in different regions in China from 2005 to 2019. 
The specific results of this analysis, as presented in Table 
3, strongly confirm the significant existence of spatial 
autocorrelation and spatial spillover effects in carbon 
emission intensity at the regional level in China during 

the period from 2005 to 2018. 
This study calculates the local Moran's I index of 

carbon emission intensity across China for the years from 
2005 to 2019, with particular emphasis on 2005, 2010, 
2015, and 2019. Using the local Moran's I scatter plot 
quadrants, we classify carbon emission intensity into four 
different clustering types for different Chinese regions. 
Fig. 1 shows these classifications, which effectively 
highlight the spatial patterns and regional differences in 
carbon emission intensity during these key years.

The four Moran scatterplots in Fig. 1 show that, over 
the years 2005, 2010, 2015, and 2019, Chinese regions 

Variable (1) FE_all (2) WEST (3) MIDDLE (4) EAST

lnDIGITAL
-0.0320*** -0.0114 -0.0482* -0.0231**

(-4.04) (-0.69) (-3.23) (-3.64)

lnRND
0.118* 0.190* 0.0832 0.119

(2.62) (2.25) (0.98) (2.16)

lnIND
0.0484 -0.109 0.0654 0.0912

(0.51) (-0.44) (0.87) (0.94)

lnFOT
-0.00581 -0.0570 0.0285 0.269*

(-0.11) (-1.13) (0.61) (2.36)

lnLAB
0.867 -2.401 3.939*** 1.894

(0.79) (-1.30) (6.84) (1.83)

lnAGING
0.188 -0.265 0.695** 0.366

(0.88) (-1.25) (4.77) (1.38)

lnURB
-0.136 -1.070 -0.315 0.328

(-0.36) (-2.14) (-0.88) (0.98)

lnperGDP
-0.528* -0.973*** -0.145 0.0154

(-2.65) (-5.92) (-0.43) (0.06)

_cons
3.200 25.75** -14.06** -9.852

(0.58) (3.43) (-3.89) (-1.76)

N 441 156 120 165

Province fixed Yes Yes Yes Yes

Year fixed Yes Yes Yes Yes

 
  0.893 0.886 0.956 0.951

Hausman test (full sample)
chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 18.34

Prob > chi2 = 0.0314

Note : t statistics in parentheses *, **, *** mean significant at the 10%, 5%, and 1% levels respectively.

Table 4. Two-way fixed effects model results
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exhibit four types of carbon emission intensity clustering: 
high-high, low-low, high-low, and low-high4). Northern 
and central-western China are characterised by high-high 
clusters, which are rich in natural resources but 
underdeveloped economically. Reliance on energy-intensive 
industries, coupled with a lack of advanced sectors, leads 
to poor resource efficiency and high emissions. In 
contrast, the coastal regions, which fall into the low-low 
clusters, demonstrate economic advancement with technology-
rich industries, fostering high energy efficiency and lower 
emissions. Provinces such as Inner Mongolia, Guizhou, 
and Hebei are high-low clusters. Despite their high 
emissions, these provinces have a minimal impact on the 
emissions of their neighbors. This study reveals a strong 
spatial correlation in the carbon emission intensity of 
China’s provinces, highliting distinct regional disparities 
and trends.

4.2. Basic regression results

The Hausman test indicates that a fixed-effects model 
is more appropriate for our analysis than a random-effects 
model. Consequently, we employ the two-way fixed 
effects model, and the estimated results are shown in 
Table 4. Simultaneously, we also categorized the samples 
into eastern, middle, and western regions based on 
traditional Chinese regional divisions. This classification 
allows for a nuanced analysis of how the development of 
digital industry affects carbon emission intensity in 
different regions of China. A detailed breakdown of the 
regional divisions is shown in Fig. 2.

For the full sample and the central and western 
regional subsamples, we observed a significant negative 
correlation betweenthe the a the digital industry development 
and carbon emission intensity. For example, the estimated 
coefficient implies that a 10% increase in the proportion 

4) High-high Clustering: An area and its surrounding regions, both exhibiting attribute values above average, signify prosperous or 
resource-rich hotspots. High-low Clustering: An area with high attribute values surrounded by regions with lower values indicates an 
economic or resource-based outlier.

Fig. 2. Map of regional divisions in China.
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of income from digital industry in GDP is associated with 
0.32% decrease in carbon emission intensity. This suggests 
that advances in digital industry lead to significant 
reductions in emissions, highlighting the importance of 
digitalization in reducing carbon emissions, especially in 
these areas.

4.3. Statistical test results

Before inferring with the Spatial Durbin Model (SDM), 
we first employed statistical testing methods such as the 
Lagrange Multiplier (LM), Likelihood Ratio (LR), and 
Hausman tests. The constructed Moran's I statistic in 
Table 5, derived from our model's residuals, tests for 
spatial autocorrelation in the OLS model residuals, 
indicating if the spatial model captures spatial dependencies. 
A significant deviation from zero highlights the need for 
spatial econometric models. According to the results in 
Table 5, most LM tests rejected the null hypothesis, 
indicating the presence of SAR and SEM elements, 
further supporting the SDM. The LR test rejected the null 
hypothesis of simplifying the SDM to SAR or SEM, 
solidifying the SDM's position as the preferred model. 
Lastly, the Hausman test results endorsed the use of the 
bidirectional fixed effects SDM for comprehensive spatial 
econometric analysis.

4.4. Empirical results of the Spatial Durbin 

model

This study evaluated spatial models using a geo-economic 
nested matrix. The two-way Fixed Effects Spatial Durbin 
model was found to be the most appropriate for the 
sample data. The spatial regression analysis in Table 6 
shows an effective model simulation with significant 
spatial autocorrelation at the 1% level, suggesting spatial 
spillovers in carbon emission intensity across provinces 
and cities. The development of the digital industry shows 
a significant negative effect on carbon emission intensity 
at the 1% level, consistent with Yang et al. (2023). This 
industry, which is characterized by high value-added and 
environmentally friendly features, can reduce fossil fuel 
consumption and carbon emissions. Technological and 

economic spillovers from the digital industry further help 
to reduce carbon emissions.

The Spatial Durbin Model elucidates the multidimensional 
impact of digital industry development on carbon emission 
intensity through direct, indirect, and total effects, as shown 
in Table 6. Direct effects show how digital industry growth 
affects carbon emission intensity within the same region, 
while indirect effects explore its influence on the carbon 
emission intensity of neighboring regions. Despite the 
substantial reduction in carbon emission intensity attributed 
to digital industry development, as evidenced by significant 
direct and total effects, the spatial spillover effect remains 
insignificant, indicating a limited diffusion of benefits across 
provinces.

Digital technologies contribute to reducing carbon 
emission intensity by enhancing energy efficiency, reducing 
energy consumption per unit of output, and facilitating the 
optimization of industrial structure. However, the spatial 
spillover of these benefits is limited, possibly due to the 
challenges that neighboring areas face in adopting green 
technologies and management practices. Differences in 
regional levels of development, technological advancements 
and policy frameworks further hinder the spatial diffusion 
of these effects. Although the indirect effect is not 
significant, the contribution of the digital economy to 
reducing carbon emission intensity is profound, underlining 
its pivotal role in reducing overall carbon emissions.

In our study, we found that the level of economic 
development is significantly negatively correlated with 
carbon emission intensity at the 1% confidence level, 
accompanied by a strong spatial spillover effects. In 
addition, the population structure (proportion of the 
working population and population aging) is significantly 
positively correlated with carbon emission intensity, also 
significant spatial spillover effects. Foreign trade has a 
significant positive effect on carbon emissions, implying 
that increased trade increases local and regional emissions 
in China. Interestingly, R&D investment has a statistically 
positive relationship with emissions in our study, contrary 
to the expectation of green development. When controlling 
for the degree of digital industry development and 
industrial structure, regional R&D investment is linked to 
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 Statistic P-value

LM test

Moran's I 3.147 0.002

LM-Error 8.770 0.003

Robust LM-Error 34.035 0.000

LM-Lag 0.198 0.656

Robust LM-Lag 25.462 0.000

LR test
Assumption: SAR nested within SDM 65.54 0.000

Assumption: SEM nested within SDM 67.37 0.000

Hausman test Ho: difference in coeffs not systematic 73.00 0.000

LR test for SDM model 
Assumption: ID nested within Both 44.34 0.000

Assumption: Time nested within Both 909.99 0.000

Table 5. Statistical tests of spatial econometric model

Variable Estimates Wij Direct effect Indirect effect Total effect

lnDIGITAL
-0.028*** 0.007* -0.028*** 0.003 -0.024***

(0.00) (0.09) (0.00) (0.39) (0.00)

lnRND
0.109*** 0.055* 0.113*** 0.079** 0.191***

(0.00) (0.08) (0.00) (0.02) (0.00)

lnIND
0.006 -0.266*** -0.005 -0.294*** -0.300**

(0.91) (0.00) (0.91) (0.00) (0.01)

lnFOT
0.092*** 0.079*** 0.097*** 0.104*** 0.201***

(0.00) (0.01) (0.00) (0.00) (0.00)

lnLAB
1.984*** 0.963* 2.060*** 1.364** 3.424***

(0.00) (0.09) (0.00) (0.03) (0.00)

lnAGING
0.326*** 0.293** 0.350*** 0.381*** 0.731***

(0.00) (0.01) (0.00) (0.00) (0.00)

lnURB
0.012 -0.684*** -0.031 -0.753*** -0.783***

(0.94) (0.00) (0.84) (0.00) (0.00)

lnperGDP
-0.548*** -0.366*** -0.573*** -0.485*** -1.058***

(0.00) (0.01) (0.00) (0.00) (0.00)

 0.135***
sigma2_e

0.008***

(0.01) (0.00)

N 420 R-squared 0.473

Number of Province 28

Note : p-value in parentheses, *, **, *** mean significant at the 10%, 5%, and 1% levels respectively.

Table 6. Spatial econometric regression results
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higher emission intensity. This may reflect a regional 
focus on boosting production and economic growth 
without prioritizing low-carbon principles.

While the direct effects of industrial structure and 
urbanization rate are not significant, their spillover effects 
are significantly negative. This is consistent with Luo et 
al. (2023), which suggests a complex, non-linear relationship 
between these factors and carbon emissions.

5. Conclusions

This study builds on existing research to deepen our 
understanding of the impact of digital industrialization on 
carbon emission intensity. We use provincial panel data 
from 2005 to 2019 to conduct empirical analysis employing 
the two-way Fixed Effects Model and the two-way Fixed 
Effects Spatial Durbin Model. This approach allows us to 
examine the impact of digital economy on carbon emission 
intensity, both within and across different regions.

From the empirical results, we find that China's digital 
industry advancement could potentially reduce carbon 
emission intensity. However, this effect varies regionally, 
with a stronger impact in the central and eastern regions 
compared to the less developed western areas. From a 
spatial perspective, the growth of digital industry contributes 
to local and overall carbon reduction. However, the results 
indicate that the spatial spillover effect among provinces 
remains limited. 

This study's findings lead to several policy recommendations 
to support China's “3060 dual carbon goals” and sustainable 
economic development. Firstly, there is a pressing need to 
encourage comprehensive digital transformation in traditional 
industries. Such transformation is essential for promoting 
green, low-carbon transitions, especially by investing in 
digital industry technologies that foster green development 
and focusing on innovations that directly reduce carbon 
emissions in sectors with high carbon reduction potential. 
Secondly, our analysis highlights the importance of 
accelerating the green energy transformation. This can be 
achieved by transforming key carbon-emitting sectors 
through increasing the use of non-fossil energy sources and 
improving energy efficiency. The integration of digital 

technologies is crucial in driving innovation within the 
energy sector, thereby enhancing the efficiency of energy 
use and establishing a new paradigm for clean, efficient, 
and low-carbon energy systems. Lastly, to address the 
association between carbon emissions and demographic 
factors such as labor force size and population aging, it 
is recommended to promote green household energy 
practices. This approach aims to mitigate the environmental 
impacts associated with demographic changes and places 
an emphasis on energy conservation and efficiency at the 
household level.

This paper primarily examines the impact of the digital 
industry development on regional carbon emissions. As 
digitalization progresses and the digital economy 
advances, future research may focus on the underlying 
mechanisms how and why digital industry are associated 
with carbon emissions reductions. Understanding consumer 
behavior in the digital age and its contribution to carbon 
emissions could be another critical area. This includes 
studying the environmental impact of consumer-driven 
digital trends like online streaming and shopping. Future 
research in these areas will enhance our understanding of 
the green impacts of digitalization, informing policy-making 
as well as contributing to a more sustainable future.
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