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1. Introduction

Global climate change and its adverse effects are a 
shared concern for humanity. Human actions, notably the 
extensive use of energy by industrialized countries during 
the industrial revolution, have led to a surge in 
greenhouse gas concentration. According to the Sixth 
Assessment Report from the Intergovernmental Panel on 
Climate Change (IPCC, 2022), human activities, 

particularly the combustion of fossil fuels and alterations 
in land use, have played a significant role in global 
warming for over a century. These activities resulted in 
the current average temperature being 1.1°C higher than 
that observed during the pre-industrial era. 
Simultaneously, climate change, being a global 
phenomenon, has had profound impacts on urban life 
(Dulal and Akbar, 2013). Elevated GHG levels contribute 
to the rise in global temperatures, intensifying the 
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occurrence of extreme weather events like floods, 
droughts, and storms while broadening the spread of 
tropical diseases. These ramifications place substantial 
financial burdens on essential urban services, 
infrastructure, housing, human welfare, and health (Bell et 
al., 2017). 

In fact, some developed countries have recognized 
climate change as a serious challenge to national security 
and incorporated the impacts of climate change into their 
strategic frameworks. In 2010, the Obama administration 
underscored the undeniable, pressing, and critical nature 
of climate change within the United States' national 
security strategy. It emphasized the possible repercussions 
of climate change on regional security and the welfare of 
the public, meanwhile, highlighting the imperative to 
implement effective measures. Likewise, the Korean 
government launched a series of initiatives to address 
climate change. In 2008, it charted a new path for 
national development by embracing "low-carbon and 
green" principles. Later on, in 2010, it enacted the Basic 
Act on Low-Carbon and Green Growth. While Japanese 
national security strategy of 2013 similarly recognized 
climate change as a key issue affecting national security. 
In 2015, under the guidance of the United Nations, 195 
parties unanimously agreed to adopt the Climate Accord, 
the world's first comprehensive climate change agreement, 
and established a key goal: to limit the rise in global 
average temperature to less than 2°C compared to the 
pre-industrial era. Additionally, the accord embraced an 
even more ambitious aspiration, striving to constrain the 
temperature increase to less than 1.5°C and prevent more 
serious consequences. China had become the world’s 
largest carbon emitter since 2006. It produced 10.67×109 
t of CO2 in 2020 which accounted for 30.65% of the 
global total (Ritchie et al., 2020). In response to 
increasing environmental and public opinion pressures, the 
Chinese government took proactive measures and made 
substantial commitments to reduce emissions. Back in 
2007, China unveiled its National Plan for Addressing 
Climate Change, which laid out ambitious targets to 
combat climate change by 2010. In 2022, as outlined in 
“China's National Emission Reduction Achievements, 

New Targets, and New Measures” submitted to the United 
Nations Framework Convention on Climate Change 
(UNFCCC), China made noteworthy pledges. It has 
embarked on a significant environmental mission with 
two pivotal objectives: firstly, to attain a peak in CO2 
emissions by 2030, and secondly, to realize carbon 
neutrality by 2060. By 2030, China is resolutely 
committed to diminishing carbon dioxide emissions per 
unit of gross domestic product (GDP) by more than 65% 
in comparison to the levels recorded in 2005. 
Furthermore, China had a strategic plan to augment the 
share of non-fossil energy sources in their primary energy 
consumption to roughly 25%. These announcements 
underscored China's unwavering dedication to combat 
climate change and transition towards a more sustainable 
and nature-conscious energy landscape.

Although there have been many carbon emission 
commitments and greenhouse gas policies, a more 
comprehensive approach is necessary to achieve the stated 
climate goals. Countries must address greenhouse gas 
emissions at the level of energy consumption and 
production, promote green innovation, accelerate the 
transition to sustainable practices and strengthen green 
and low-carbon economic development system (Chen et 
al., 2022). Compared with traditional modes of 
technological innovation, green technological innovation 
is more oriented towards low-carbon development and has 
a significant inhibitory effect on carbon emissions, 
providing key support to countries around the world in 
addressing climate change and becoming the key to solve 
the environmental pollution problem (Gao et al., 2018). It 
is worth noting that some researchers emphasized the 
continuous growth of climate change related technologies 
as evidenced by the rising number of patents since the 
1970s (Su and Moaniba, 2017). Consequently, a large 
body of literature has examined the impact of green 
innovation on climate change, with a particular focus on 
greenhouse gas emissions.

Conversely, the impact of climate change on green 
innovation remains a limited area, with research findings 
only beginning to emerge in recent years. Su and 
Moaniba (2017) were pioneers in reframing the literature 
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findings into a more specific question: whether emission 
changes influence the development of environmentally 
related technologies. Instead of focusing on the 
conventional concept of “green technology innovation 
leading to climate change and greenhouse gas emissions 
reduction”, they examined the idea of “climate change as 
a catalyst for greenhouse gas emissions and green 
technology innovation”. Climate change is influenced by 
complicated environmental factors. The GHGs, like CO2, 
hold considerable significance. Therefore, numerous 
scholars utilize them as direct indicators of climate 
change, often overlooking climate variability and failing 
to account for the impact of climate uncertainty or 
extreme weather conditions on green innovation. 
Unfortunately, most existing literature uses national level 
samples and data to study the impact of climate change 
on green innovation, with a greater focus on developed 
countries. There are few articles in this sub research field 
that specifically focus on China, a major greenhouse gas 
emitter. However, this article uses data from prefecture 
level cities along the southeastern coast of China to 
supplement the research on urban level climate change on 
green innovation, enriching the content of this field from 
a micro perspective. Secondly, this article is based on grid 
data of temperature and precipitation at meteorological 
stations in various cities in China, which is more accurate 
and exogenous than previous studies. Furthermore, when 
we introduce industrial structure as a moderating variable 
to test the heterogeneity impact of climate change on 
green innovation, the results show that there are 
significant variations in green innovation across cities 
with different industrial structures. Therefore, the study of 
moderating effects also enriches the impact of climate 
change on green innovation under marginal changes in 
urban industrial transformation.

The remaining part of this article is structured as 
follows: In Section 2, we conducted an extensive 
literature review, provided a comprehensive overview of 
relevant research in this field, and proposed research 
hypothesis. Section 3 introduced our research design, data 
sources and variable definitions, as well as the empirical 
analysis methods used in this study. Section 4 provides a 

detailed discussion of the benchmark results obtained 
from the dynamic panel SYS-GMM model. In Section 5, 
we delved into the moderating effects of climate change 
on green technology innovation. Finally, in Section 6, we 
summarized our research findings, limitations, and 
proposed policy recommendations.

2. Literature review and research 

hypothesis

The definition of climate change varies across 
organizations. According to the IPCC (2018), Climate 
specifically refers to the long-term average or typical 
weather patterns. Climate change encompasses measurable 
and statistically testable alterations in regional climate 
states over time, including specific weather conditions in 
specific areas. NASA defines climate change as the 
average or typical variation in weather for a region or 
city. Climate change always involves transformations in 
Earth's overarching climatic conditions, which can 
manifest as variations in its average temperature. The 
predominant emphasis in the majority of climate change 
impact studies centers around alterations in mean climate 
conditions. When considering climate model outputs, 
these shifts in mean climate are generally more robust 
compared to changes in climate variability. However, a 
greater emphasis on changes in climate averages might be 
resulting in a substantial underestimation of the 
comprehensive impacts of climate change on both 
biological and human systems within the natural world. 
(Thornton et al., 2014). Climate variability refers to the 
fluctuations and deviations in temperature and 
precipitation patterns when measured against a long-term 
average, and it encompasses extreme weather events such 
as droughts and floods. These phenomena can effectively 
function as proxies for assessing the forthcoming 
consequences of climate change. This is particularly 
important because climate change projections anticipate a 
heightened occurrence and heightened intensity of both 
floods and droughts. (Dai, 2013; Hirabayashi et al., 2013; 
IPCC, 2014). Therefore, climate variability is slightly 
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different from climate change, emphasizing the 
uncertainty of climate trends and having a significant 
impact on economic development, investment returns, 
policy formulation, and asset pricing (Barnett et al., 
2022). It is an important emerging field, and it is 
necessary to consider the variability of climate when 
studying climate change. In addition, the uncertainty of 
this temperature level may lead to greater income 
variability and uncertain investment returns in the natural 
environment (Linsenmeier et al., 2022).

In addition, as early as 2003, scholars analyzed the 
relationship between climate change and green technology 
innovation, covering research on the relationship between 
innovation and greenhouse gas reduction. The research 
results emphasized the role of induced innovation (driven 
by environmental challenges) in reducing greenhouse gas 
emissions and achieving climate stability, laying the 
foundation for research on environmental change and 
green innovation (Jaffe et al., 2003). Afterwards, a large 
amount of academic research emerged in this field, with 
particular attention directed toward the intersection of 
environmental change and green innovation, measured 
from the perspective of environmental quality or 
innovation efficiency. Some Chinese researchers, using 
various green innovation indicators, have confirmed its 
role in reducing CO2 emissions (Lin and Zhu, 2019; 
Zhang and Xu, 2017). Subsequent researchers, building 
upon this foundation, divided China into different regions 
and affirmed that the eastern region exhibits the highest 
efficiency in green innovation and the strongest capacity 
to curb carbon emissions (Cai et al., 2021; Long et al., 
2020).

All the above studies have examined the impact of 
green innovation on climate change, and there is 
relatively little discussion in the academic community on 
how climate change affects green innovation. The first 
possible mechanism is that climate change hinders a 
country's green innovation by reducing economic growth 
levels. More specifically, Dell with his colleagues 
examined the relationship between weather fluctuations 
and economic growth in the global dimension (Dell et al., 
2012). Using large-scale cross-country data from 125 

countries spanning 1950 to 2005 and data on surface 
temperature and rainfall for empirical analysis, they found 
that rainfall has no influence on the economy, while 
temperature has a significant impact on the national 
economy, but the related effects are different. There are 
significant differences across countries. For a per Celsius 
increase in temperature, the growth rate of national 
income in poor countries fell by 1.4 %, while economic 
growth in rich countries was barely affected. Using 
national level data, some scholars used a dynamic panel 
SYS-GMM model to conduct collective analysis on 
samples from 60 countries (including 36 developed 
countries and 24 developing countries) between 2008 and 
2014. The results indicated that the influence of climate 
change on green innovation is not significant across all 
countries, only in developed countries it showed 
significantly positive (Hakimi and Inglesi-Lotz, 2020). 
Some researchers in the field of urban planning have used 
extreme weather to demonstrate that climate change can 
accelerate funding for sustainable urban design and 
innovation to enhance urban resilience (Liu et al., 2021). 
On the contrary, others hold different opinions, believing 
that there is a negative correlation between extreme 
temperatures and green innovation, with a more 
significant impact on green invention and innovation (Hu 
et al., 2022). As is well known, the view that economic 
growth can effectively address climate change and 
promote green innovation has been confirmed by many 
scholars (Wen et al., 2022; Yang et al., 2022). Therefore, 
from a theoretical perspective, we can propose our first 
hypothesis.

H1: Climate change has an impact on green innovation

Secondly, there is a close relationship between 
industrial structure and green innovation, and the 
transformation and evolution of industrial structure have a 
significant impact on the development of green innovation 
(Mehmood et al., 2024). The intelligentization of 
manufacturing industry is conducive to generating 
"technology promotion effect" and "cost reduction effect", 
thereby promoting green technology innovation, 
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effectively increasing ideal output, and significantly 
reducing adverse output. Especially in the eastern region 
of China, the effect is more significant (Yang et al., 
2022). However, the service industry in China faces loose 
environmental regulations, thus lacking the driving force 
for green innovation. Also, the service industry is mainly 
based on human capital, and its relationship with green 
innovation may not be significant (Yang and Luo, 2023). 
Further research has found that industrial structure 
upgrading has spatial spillover effects and is an important 
way to accelerate urban green innovation and achieve 
sustainable development. The rationalization of industrial 
structure has significant positive effects on the direct, 
indirect, and overall effects of green innovation (Qiu et 
al., 2023). Based on the above literature analysis, we can 
propose a second hypothesis.

H2: Climate change will have significant differences in 
its impact on green innovation due to different 
industrial structures. 

3. Research design and methodology 

In this section, we outline the sample and empirical 
research methodologies employed in this study. 

3.1. Sample

In this study, we examine the relationship between 
climate change and green innovation in 55 cities located 
in the provinces of Jiangsu, Zhejiang, Fujian, Guangdong, 
and the municipality city Shanghai. The cities included in 
the sample are limited to administrative units of 
prefecture-level cities and above in China to ensure the 
accuracy and availability of data. To study the impact of 
climate change on green innovation, we use annual data 
on green invention patent applications as proxies for 
assessing green innovation and also use an alternative 
dependent variable green utility patent applications to do 
the robustness test. In China, patents for green inventions 
typically exhibit a higher degree of innovation quality and 
technological sophistication compared to patents for green 

utility, however, both can be reliable indicators of green 
technological innovation and are widely used in green 
innovation research.

As we mention before, this study considers temperature 
and precipitation anomalies as variables to explain climate 
variability. Temperature anomalies and precipitation 
anomalies are calculated as deviations from the spatial 
mean and then divided by the standard deviation within 
each region, following the method of previous study (Dell 
et al., 2014). Based on the fundamental model 
specification, we have also obtained inspiration from 
latest research and updated the details of the equation, 
which is more suitable for our research. The first part—
the difference in mean—is already captured in a broad 
sense by the panel model. The second part—scaling by 
the standard deviation—takes a particular view of the 
underlying climate–economy model where level changes 
matter not in an absolute sense but in proportion to an 
area’s usual variation (Ouyang et al., 2023). Mean 
temperature and precipitation data for each city are 
obtained from the China National Scientific Data Sharing 
Service Platform-China Surface Climate Data Daily 
Values Dataset (v3.0), and the Barnes method are used 
for data processing. The Barnes method involves the 
initial use of IDW square interpolation to form grid point 
data covering a 500 × 500 grid in China, with a grid size 
of 0.12319424 longitude × 0.0994549 latitude and then 
partitioned and averaged for calculation.

Temperature and Precipitation Anomalies Formula:

   
 (1)

   
(2)

  means the average 
temperature(precipitation) of city i in year t,  () is the average 
temperature (precipitation) of city i from 2009 to 2019, 
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and  () is the 
standard deviation of the temperature for city i from 2009 
to 2019. Table 1 Provides a summary of the variable 
definitions and sources utilized within this study. For the 
green patent applications, GDP, population and FDI, we 
all use nature logarithm number, in order to compress the 
amplitude range of data, make it easier to process, 
improve the normality of data, and make it more in line 
with standard distribution assumptions such as Gaussian 
distribution.

3.2. Econometric approach

The dynamic panel data model refers to a model that 
reflects the dynamic lag effect by introducing lagged 
dependent variables into the static panel data model 
(Blundell and Bond, 1998). The uniqueness of this model 
lies in the correlation between the dynamic lag term of 

the dependent variable and individual effects in the 
components of random errors, resulting in endogeneity in 
the estimation. Therefore, in the dynamic panel model, 
past observable values are allowed to be used, taking into 
account the impact of past results on current results. In 
fact, many economic problems are essentially dynamic, 
and some economic models indicate that current behavior 
depends on past behavior. For example, GDP growth and 
patent data growth. The SYS-GMM model is an effective 
dynamic panel data analysis method that can overcome 
endogeneity and consistency issues in panel data, improve 
the accuracy and efficiency of parameter estimation, and 
is therefore widely used in empirical research in fields 
such as economics and finance (Judson and Owen, 1999). 
In general, researchers can use SYS-GMM model in 
empirical studies when the variables are not strictly 
exogenous. In this study, both temperature and 

Variable  Unit Definition Source

LnIPAT Set
The nature logarithm number of green invention patent 

applications obtained by year
China National Intellectual Property 
Administration Data (2009 ~ 2019)

LnUPAT Set
The nature logarithm number of green utility patent 

applications obtained by year
China National Intellectual Property 
Administration Data (2009 ~ 2019)

LnGDP Million Yuan The nature logarithm number of GDP per capita in each city
China National Bureau of Statistics 

(2009 ~ 2019)

LnPOP
Million
People

The nature logarithm number of long-term residents in each 
city

China National Bureau of Statistics 
(2009 ~ 2019)

LnFDI Million
The nature logarithm number of foreign direct investment in 

each city
China National Bureau of Statistics 

(2009 ~ 2019)

MA % Manufacturing industry value added as a share of GDP
China City Statistical Yearbook

(2009 ~ 2019)

Ser % Service industry value added as a share of GDP
China City Statistical Yearbook 

(2009 ~ 2019)

TEMP Degree centigrade Regional average temperature in a given year
China Meteorological Statistics Bureau 

(2009 ~ 2019)

PREC Millimeter Regional average precipitation in a given year
China Meteorological Statistics Bureau 

(2009 ~ 2019)

TANO Not available
Regional deviation of temperature in a given year from its 
long-run mean, divided by regional year-specific standard 

deviation of temperature.

China Meteorological Statistics Bureau 
(2009 ~ 2019)

PANO Not available
Regional deviation of temperature in a given year from its 
long-run mean, divided by regional year-specific standard 

deviation of precipitation.

China Meteorological Statistics Bureau 
(2009 ~ 2019)

Table 1. Variables definition
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precipitation are considered to be strictly exogenous 
variables. Therefore, our temperature anomalies and 
precipitation anomalies are also strictly exogenous. This 
condition makes the applicability of the SYS-GMM 
model to this study questionable. However, in addition to 
mitigating endogeneity concerns, SYS-GMM model 
serves as a vital tool for analyzing our dynamic panel 
data, thereby yielding more robust and consistent 
estimates. In the recent research paper, temperature not 
only appears as an independent variable in the SYS-GMM 
model but also serves as a dependent variable (Deng et 
al., 2023). Therefore, a series of independent variables, 
such as temperature and precipitation, can be 
appropriately applied to the SYS-GMM in this study. 
Besides, our study selects a 10-year dataset from 2009 to 
2019 and uses the sample of 55 cities, following the 
requirements of the SYS-GMM model “small T, large N” 
panel data proposed by Roodman (2009a). The estimation 
of dynamic panel GMM models can be categorized into 
either one or two step estimation, contingent on the 
weight matrix employed. Bond (2002) contends that the 
standard errors of two-step GMM estimates display a 
notable downward bias in the finite samples. Roodman 
(2009b) highlights that, with an escalating number of 
periods, the SYS-GMM generates a substantial number of 
instrumental variables by default, potentially surpassing 
the endogenous variables and compromising the model's 
diagnostic tests. In light of these considerations, we lean 
towards adopting a two-step system GMM approach for 
model estimation.

The theoretical underpinning of the GMM estimator 
consistency hinges on the fulfillment of various 
assumptions, which need two essential assessments. The 
first examination involves the validity of instrumental 
variables, evaluated through Hansen’s (1982) 
over-identification constraints test, which presumes the 
absence of a correlation between all instrumental variables 
and error terms. Subsequently, the second test scrutinizes 
the second-order serial correlation in the stochastic error 
terms of the difference equation by employing the 
Arellano-Bond  test for autocorrelation in random error 
terms (Arellano and Bond, 1991). The original null 

hypothesis for this test posits the absence of second-order 
serial correlation in the random error terms of first-order 
difference equations. The non-rejection of this original 
hypothesis indicates the validity of the instrumental 
variables and correct specification of the model. Based on 
these theoretical mechanisms, this study constructs the 
following formulas:

ln   ln ln ln ln  
(3)

ln   ln ln ln ln 
(4)

The dependent variable, ln (ln is 
quantified as the natural logarithm of green invention 
patent applications (green utility patent applications), ln ln denotes the lagged variable of 
the dependent variable.  represents the level of 

climate change and climate variability in city i in year t 
which include temperature, precipitation, temperature 
anomalies, and precipitation anomalies. Besides regarding 
climate change as the main independent variable, this 
study also incorporates several other variables that have 
direct or indirect impacts on green innovation. Based on 
previous research, it has been determined that foreign 
direct investment positively contributes to the 
advancement of green innovation in China (Luo et al., 
2021). The GDP per capita comprehensively reflects a 
region's level of economic development and strength, and 
the number of long-term residents serves as a measure of 
regional human capital. In fact, green innovation also has 
an effect on climate change and industrial transformation 
(Du et al., 2021), thus the causal relationship between the 
interaction term and the two needs to be considered. 
Based on the above benchmark model, this paper explores 
the industry heterogeneity of climate change on green 
innovation by introducing moderating variables. The value 
added of manufacturing industry (MA) in GDP and the 
value added of service industry (Ser) in GDP are used as 
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the moderating variables of the mechanism test, so as to 
verify the mechanism of climate change's influence on 
green innovation. The second model of the model is 
shown as follow and:

ln   ln  ln lnln 
(5)

ln   ln  ln lnln 
(6)

 only includes temperature anomalies and 
precipitation anomalies, so  represent TANO×MA, 

TANO×Ser, PANO×MA, PANO×Ser these four 
intersection terms. Also, Fig. 1 Clearly demonstrating the 
theoretical framework of the article.

4. Results of dynamic panel SYS-GMM 

model

4.1. Descriptive analysis and correlation

Table 2 displays descriptive statistics for all variables 
used in this study during the period 2009-2019, including 
the mean, standard deviation, maximum and minimum.

The data in Table 2 shows that the standard deviation 
of precipitation anomalies and temperature anomalies 
(PANO, TANO) of 1.002 and 1.001 are greater than their 
mean values of 0.000587 and 0.00108, which normally 

GDP

FDI

POPClimate 
Change

Industry 
Structure

Green
Innovation

Fig. 1. Climate change and green innovation framework

Table 2. Descriptive statistics

Variables Obs mean sd min max

TEMP 605 18.88 2.415 13.88 23.24

PREC 605 15,149 3,653 7,312 26,032

PANO 605 0.000587 1.002 -2.575 2.615

TANO 605 0.00108 1.001 -2.069 2.007

MA 605 47.108 7.423 27.00 63.22

Ser 605 44.562 7.655 27.23 72.90

LnIPAT 605 5.106 1.932 0 9.421

LnUPAT 605 5.557 1.641 0 9.249

LnGDP 605 10.9245 0.546 9.422 11.982

LnFDI 605 10.99 1.565 7.385 14.46

LnPOP 605 6.176 0.578 4.688 7.816
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indicates that there may be extreme anomalies in the 
dataset if the standard deviation is greater than the mean 
value, and the data need to be further processed. 
However, in this study, precipitation anomaly and 
temperature anomaly (PANO, TANO) indicate the 
deviation of precipitation and temperature from their 
mean values, which are intentionally used to reflect the 
extreme precipitation and temperature conditions in the 
region, therefore do not need to further process the data. 
The minimum value of LnIPAT and LnUPAT are 0, 
because the green invention patent applications and green 
utility patent applications for some cities in some given 
years are only 1, and so their natural logarithm are 0. The 
standard deviation of LnGDP is the smallest among these 
variables because the cities selected for this study are 
from Zhejiang Province, Jiangsu Province, Guangdong 
Province, and Shanghai Municipality, which belong to the 
comparatively developed provinces in the eastern region 
of China, and the economic development of the different 
cities varies, but it is relatively small compared to the 
other regions of China. From the industrial structure data, 
we can see that the average added value of manufacturing 
industry in GDP (47.108) is only slightly higher that of 
service industry (44.562). It demonstrates that the overall 
integration of manufacturing industry and service industry 
in these cities is particularly good. At the same time, we 
also note that the maximum added value of service 
industry in GDP (72.90) is much larger than that of 
manufacturing sector (63.22), indicating that some cities 

have completed industrial transfer or rely on the single 
industrial structure. Table 3 shows the degree of 
correlation between each of the variable.

The correlation matrix reveals whether or not the 
dataset has a multicollinearity problem. A correlation 
coefficient greater than 0.80 or 0.9 suggests a potential 
multicollinearity issue. Table 3 shows that green invention 
patent is correlated with all independent variables, and 
green utility patent is correlated with all independent 
variables except for precipitation. And we notice that only 
the correlation coefficient between per capita GDP and 
the two dependent variables is greater than 0.8. GDP per 
capita is utilized as a control variable in this research. 
Theoretically, we can narrow our attention to the 
importance and correlation coefficient of the core 
explanatory variables, when we regard GDP per capita as 
the control variable, covariance is somehow not a 
problem. Especially, the correlation coefficients of green 
invention patents and green utility patents with other 
independent variables are all less than 0.8.

4.2. Benchmark analysis results

In this section, we conduct an analysis to assess the 
connection between the previously mentioned variables 
(temperature, precipitation, temperature anomalies, 
precipitation anomalies) and their influence on green 
innovation. 

At beginning, we observe the robustness of the model 
from three aspects. Firstly, both regression of LnIPAT 

LnIPAT LnUPAT TEMP PREC TANO PANO LnGDP LnFDI LnPOP

LnIPAT 1 —

LnUPT — 1

TEMP 0.264*** 0.229*** 1

PREC 0.109*** -0.0510 0.637*** 1

TANO 0.293*** 0.320*** 0.152*** 0.104** 1

PANO 0.107*** 0.120*** 0.0250 0.624*** 0.154*** 1

LnGDP 0.876*** 0.869*** 0.230*** -0.0430 0.326*** 0.109*** 1

LnFDI 0.764*** 0.713*** 0.291*** 0.207*** -0.0220 -0.00300 0.661*** 1

LnPOP 0.627*** 0.616*** 0.112*** 0.110*** 0.0400 0.0180 0.361*** 0.620*** 1
***p<0.01, **p<0.05, *p<0.1

Table 3. Correlation matrix
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and LnUPAT show that their lagged variables are 
positively correlated with them and are statistically 
significant at the 1% level, implying that the current data 
on LnIPAT and LnUPAT depend on the number of 
previous years. Secondly, all p-values for AR1 less than 
0.05, indicating the presence of first-order autocorrelation 
in the equations. Conversely, all p-values for AR2 were 
greater than 0.05, suggesting the absence of a 
second-order autocorrelation. Therefore, further 
higher-order tests are unnecessary, making these results 
favorable. In the end, all Hansen's test results are greater 
than 0.1 and therefore do not reject the original 
hypothesis, which suggests that the SYS-GMM 
instrumental variable estimates are valid and do not suffer 
from over-identification problem. These empirical findings 
enhance the credibility of our results. In F1 of Tables 4 
and 5, both LnIPAT and LnUPAT are independent of 

temperature, so the annual average temperature greatly 
underestimates the combined impact of climate change on 
the natural world's biological and human systems. When 
average temperature is used as a proxy variable for 
climate change, its impact on green innovation is not 
significant (Thornton et al., 2014), which is consistent 
with existing research. Only some scholars have proven 
that for every 1°C increase in summer, green innovation 
decreases by 3.2%, and for every 1°C increase in winter, 
green innovation increases by 1.9%. Secondly, rising 
summer temperatures will squeeze research and 
development funds and consume labor, thereby 
suppressing green innovation (Li and Lu, 2023). In F2, 
although the correlation coefficients between precipitation 
and LnIPAT and LnUPAT are small (0.000139 and 
0.0000131), they are all positively correlated with them at 
a significance level of 0.5%. When we jump to F4, at a 

Table 4. Results of SYS-GMM for IPAT

　LnIPAT
　 F1 　 F2 F3 　 F4

　 TEMP 　 PREC 　 TANO 　 PANO

L.LnIPAT
0.698*** 0. 685*** 0.630*** 0.683***

(0.058) (0.058) (0.059) (0.055)

TEMP
-0.007 — — —

(0.008) — — —

PREC
— 0.000139** — —

— (6.22e-06) — —

TANO
— — 0.065*** —

— — (0.023) —

PANO
— — — 0.060***

— — — (0.019)

LnGDP
0.544** 0.551** 0.555** 0.552***

(0.210) (0.220) (0.217) (0.206)

LnPOP
0.412** 0.411** 0.509*** 0.424**

(0.187) (0.184) (0.188) (0.182)

LnFDI
0.076* 0.073* 0.101** 0.069*

(0.043) (0.040) (0.048) (0.041)

Constat
-7.500*** -7.827*** -8.287*** -7.645***

(2.144) (2.136) (2.144) (2.020)

Obs. 605 605 605 605

AR (1) 0.000 0.000 0.000 0.000

AR (2) 0.973 0.845 0.793 0.701

Hansen 0.310 0.297 0.303 0.308
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significance level of 1%, precipitation anomalies are 
positively correlated with both LnIPAT and LnUPAT. 
However, in F3, temperature anomalies were only 
significantly correlated with LnIPAT at a 0.5% level, and 
there was no significant correlation between LnUPAT and 
temperature anomalies. Therefore, we can conclude that in 
the context of global warming, the increase in 
precipitation and extreme precipitation weather will 
promote more green innovation activities in the region, 
investing more scientific research funds and human 
capital to alleviate the economic losses that extreme 
precipitation may cause to the region. This conclusion is 
also in line with the spatiotemporal distribution 
characteristics of precipitation in China, with the largest 
magnitude of heavy rainfall events occurring in the 
southeastern part of the country. In addition, the high 
population density in eastern China has exacerbated the 

impact of extreme precipitation changes (Zhang and Zhou, 
2020). Secondly, abnormal temperatures can promote 
green innovation, but it is first reflected in higher 
professional level green invention patents, which fully 
proves that climate change not only increases the number 
of green patents, but also improves the quality of green 
patents. It is specifically reflected in the transformation of 
green products, methods, or technological solutions. 
Economic growth, population growth, and foreign direct 
investment can also bring more green technology 
innovation. Tables 4 and 5 show that the coefficients of 
LnGDP and LnPOP are significantly positive, indicating 
that both economic growth and population growth can 
bring more green innovation. This may be because the 
faster the GDP growth and the higher the level of 
economic development, the more the government's 
willingness to support green technology research and 

　LnUPAT
　 F1 　 F2 　 F3 　 F4

　 TEMP 　 PREC 　 TANO 　 PANO

L.LnUPAT
0.743*** 0.715*** 0.715*** 0.751***

(0.070) (0.076) (0.069) (0.073)

TEMP
-0.007 — — —

(0.008) — — —

PREC
— 0.0000131** — —

— (5.69e-06) — —

TANO
— — 0.024 —

— — (0.021) —

PANO
— — — 0.054***

— — — (0.016)

LnGDP
0.500** 0.563** 0. 499** 0.475**

(0.218) (0.235) (0.210) (0.224)

LnPOP
0.334** 0.322** 0.359*** 0.311**

(0.142) (0.21) (0.126) (0.182)

LnFDI -0.005 0.005 0.004 0.003

(0.044) (0.042) (0.048) (0.041)

Constant
-5.752*** -6.664*** -5.981*** -5.561***

(2.131) (2.331) (-2.148) (2.229)

Obs. 550 550 550 550

AR (1) 0.000 0.000 0.000 0.000

AR (2) 0.788 0.722 0.714 0.725

Hansen 0.296 0.299 0.255 0.335

Table 5. Results of SYS-GMM for UPAT
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innovation, and the greater the investment of research and 
development funds in green innovation (Song et al., 
2019). Population, as another control variable, can 
measure the size of a city or its economy. The larger the 
coefficient, the stronger the city's ability to respond to 
climate change. In addition, the larger the coefficient, the 
stronger the innovation willingness of big cities to address 
climate change, and the more significant the impact of 
climate change (Zhang and Li, 2023). In Table 4, the 
coefficient of LnFDI is significantly positive, indicating 
that FDI has the ability to promote green innovation. 
However, in Table 5, LnUPAT is not correlated with 
LnFDI. Hence, we may posit that the rise in FDI brings 

about the infusion of advanced foreign technologies, 
primarily channeling funds towards research and 
development of environmentally-friendly invention patents 
boasting higher technological attributes. This, in turn, 
fosters green innovation through technological 
advancement.

5. Moderating effect of climate change 

impacts on green innovation

Based on the dynamic panel SYS-GMM model of 
climate change and green innovation constructed in the 
previous section, we will further consider the added value 

　LnIPAT
　 F1 　 F2 　 F3 　 F4

　 TANO×MA 　 TANO×Ser 　 PANO×MA 　 PANO×Ser

L.LnIPAT
0.655*** 0.656*** 0.667*** 0.678***

(0.062) (0.067) (0.070) (0.061)

TANO×MA
0.007* — — —

(0.005) — — —

TANO×Ser
— -0.010** — —

— (0.004) — —

PANO×MA
— — 0.008 —

— — (0.008) —

PANO×Ser
— — — 0.0004

— — — (0.004)

TANO
-0.289 0.530***

(0.266) (0.190)

PANO
-0.324 0.042

(0.406) (0.203)

LnGDP
0.499** 0.475** 0.579** 0.572**

(0.218) (0.227) (0.263) (0.223)

LnPOP
0.500** 0.467** 0.489** 0.448

(0.194) (0.191) (0.263) (0.036)

LnFDI
0.093* 0.103** 0.066* 0.065*

(0.047) (0.047) (0.044) (0.046)

Constant
-7.637*** -7.263*** -8.223*** -7.938***

(2.261) (2.431) (2.665) (2.380)

Obs. 550 550 550 550

AR(1) 0.000 0.000 0.000 0.000

AR(2) 0.987 0.905 0.772 0.673

Hansen 0.289 0.260 0.283 0.304

Table 6. Results on the moderating effects of industrial structure for IPAT
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of manufacturing industry in GDP and service industry in 
GDP as moderating variables to conduct empirical 
analysis on the relationship between climate change and 
green innovation. According to the Porter's Hypothesis 
appropriate environmental regulation, environmental 
protection and pollution control can promote green 
technological innovation and energy efficiency, also 
environment and economy can be mutually reinforcing 
(Porter, 1991). On the basis of Pollution Paradise 
Hypothesis, countries or regions with lower environmental 
standards also have more pollution-intensive enterprises. 
In other words, the incentives for green technological 
innovation may differ depending on the level of 

environmental standards and governance. Accordingly, 
countries and regions with different shares of 
manufacturing and services may differ somewhat in 
whether they will innovate green technologies in the face 
of climate change and environmental pollution (Baumol 
and Oates, 1988).

From Table 6, it can be seen that cities with a high 
proportion of manufacturing will generate more green 
innovation in the face of climate change. The regression 
coefficient under the interaction between MA variables 
and TANO were significantly positive (0.007) and has a 
good level of robustness. That is to say, for every 1% 
increase in the added value of manufacturing industry in 

　LnUPAT
　 F1 　 F2 　 F3 　 F4

　 TANO×MA 　 TANO×Ser 　 PANO×MA 　 PANO×Ser

L.LnUPAT
0.726*** 0.717*** 0.741*** 0.733***

(0.079) (0.071) (0.075) (0.072)

TANO×MA
0.002 — — —

(0.005) — — —

TANO×Ser
— 0.000014 — —

— (0.0033) — —

PANO×MA
— — 0.004 —

— — (0.007) —

PANO×Ser
— — — -0.001

— — — (0.003)

TANO
-0.086 0.023

(0.240) (0.153)

PANO
-0.134 0.120

(0.229) (0.172)

LnGDP
0.470** 0.495** 0.474 0.502**

(0.241) (0.226) (0.038) (0.214)

LnPOP
0346** 0.353*** 0.317 0.312**

(0.194) (0.115) (0.155) (0.142)

LnFDI
0.005 0.006 0.005 0.006***

(0.048) (0.047) (0.042) (0.039)

Constant
-5.645*** -5.919*** -5.591** -5.825***

(2.343) (2.196) (2.303) (2.162)

Obs. 550 550 550 550

AR(1) 0.000 0.000 0.000 0.000

AR(2) 0.674 0.660 0.722 0.714

Hansen 0.268 0.278 0.313 0.314

Table 7. Results on the moderating effects of industrial structure for UPAT
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GDP, the impact of temperature anomalies on green 
technology innovation increases by 0.007. However, there 
is no significant correlation between PANO×MA and 
LnIPAT. The possible reason is that the Chinese 
government, in order to normalize industrial production, 
usually provides high-temperature subsidies to 
manufacturing and research institutions in the summer 
from June to September to cope with extreme high 
temperatures, indirectly improving the labor productivity 
and green innovation efficiency of workers. However, the 
Chinese government does not provide specific subsidies 
for abnormal precipitation weather, which makes the 
interaction between MA and TANO more sensitive to 
green innovation. On the contrary, the increase in added 
value in the service industry cannot drive green 
technology innovation. From Table 6, it can be seen that 
the regression coefficient under the interaction between 
Ser variable and TANO is significantly negative, 
indicating that the increase in service industry added 
value to GDP reduces the level of green technology 
innovation. This may be due to the low carbon dioxide 
emissions of the service industry itself, which does not 
require much green technology innovation (although it 
requires service and management innovation). Moreover, 
there is no strict regulation or pressure to incentivize the 
service industry to reduce carbon emissions.

From the Table 7, we notice that there is no significant 
correlation between the intersection terms and dependent 
variable LnUPAT. The relatively developed cities along 
the southeast coast more emphasize on innovation 
efficiency, while the green utility patents are not highly 
specialized, so the changes in the proportion of 
manufacturing and service industries have no significant 
impact on green utility patents. Therefore, we will not 
discuss them further in this article. Due to the fact that 
the manufacturing industry belongs to the heavy asset 
industry and has more production factors than the light 
asset industry, it has the ability and motivation to carry 
out green innovation, reduce production costs, and enable 
enterprises to expand reproduction and improve 
performance. At the same time, the manufacturing 
industry is facing stricter environmental regulations. 

Under the strict requirements of various energy-saving, 
carbon reduction, and pollution reduction policies, 
improving ecological environment quality, and urban heat 
island effect goals, manufacturing enterprises have to 
carry out green technology innovation and energy 
transformation. Therefore, under the dual effects of 
demand driven and policy driven, cities with a relatively 
high proportion of manufacturing will generate more 
green technology innovation in the face of climate 
change, especially under the abnormal high temperature 
weather. Cities with a high proportion of service 
industries have a relatively single industrial structure or 
have already completed their industrial transformation, are 
less willing or ability to innovate in a green way.

6. Conclusion, limitation and policy 

recommendations

6.1. Conclusion

We select panel data from 55 cities along the southeast 
coast of China from 2009 to 2019, construct a dynamic 
panel SYS-GMM model, and conduct a heterogeneity 
analysis based on industrial structure to explore the 
impact of climate change on green innovation. The 
research results demonstrate that: Firstly, precipitation, 
temperature anomalies, and precipitation anomalies as 
climate change indicators can all impulse green 
innovation to varying degrees, and after robustness test 
with alternative dependent variables, the results are still 
valid. Secondly, the transformation of industrial structure 
helps to improve the level of green innovation. The 
manufacturing industry has a positive effect on green 
innovation, while the service industry has a reverse 
relationship with green innovation. Finally, economic 
growth, population growth, and an increase in foreign 
direct investment can also bring more green innovation. 
The possible reasons are as follows: On the one hand, 
when facing the adverse effects of climate change, 
relatively developed coastal cities in southeast China will 
improve their risk response capacity and reduce losses 
through green innovation. On the other hand, under the 
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increasingly stringent climate policies, these cities will 
leverage their geographical advantages, local finances, 
human resources, and foreign investment to drive green 
innovation, thereby maintaining urban competitiveness. 
Additionally, cities with different proportions of 
manufacturing and service industries show differences in 
their willingness to green innovation when facing climate 
change. Cities with a higher proportion of manufacturing 
tend to generate more green innovation, while an increase 
in the service industry does not necessarily stimulate or 
diminish the willingness for green innovation.

6.2. Limitation

Undoubtedly, this article also has many shortcomings, 
which are mainly reflected in the following aspects. At 
first, due to the difficulty in obtaining some data, the 
robustness of the article is difficult to further verify. For 
example, economic losses caused by natural disasters in 
prefecture level cities, heating degree of days, and green 
patents and temperature data from other regions in China. 
Secondly, article uses grid data of temperature and 
precipitation for reprocessing, so there may be some 
deviation. Finally, the article did not examine some 
mechanisms within the structure, such as testing the 
impact of climate change on green innovation based on 
seasons, and did not provide a deeper analysis of the 
relationship between high temperature subsidies and 
employee labor productivity.

6.3. Recommendations

Given these findings, we suggest the following 
recommendations to help cities better reduce greenhouse 
gas emissions and mitigate the profound impacts of 
climate change. Firstly, the southeast coastal regions of 
China are often affected by meteorological factors such as 
typhoons and monsoons, leading to frequent and abnormal 
precipitation as common climate changes. In response, 
green innovation can be directed towards intelligent 
rainwater management systems, green building and 
infrastructure, as well as green technology and data 
analysis. By establishing rainwater harvesting systems, 

designing green roofs, and employing advanced data 
analysis tools, we can better predict precipitation events 
and take corresponding measures, utilizing rainfall for 
urban greening, alleviating urban drainage pressures, and 
ultimately enhancing urban resilience. Secondly, 
effectively addressing climate change should begin with 
recognizing and understanding the mechanism of climate 
change. Research institutions at all levels should focus on 
the mechanisms of climate change, particularly on the 
causes of extreme weather and their associated risks. They 
should also contribute to providing scientific data-sharing 
services related to climate change and conducting research 
on climate risk assessment and environmental emergency 
management. Finally, the government should align its 
industrial restructuring with the needs of market entities, 
emphasizing the diversified development of industries. 
The focus should be on transitioning from traditional 
manufacturing to modern manufacturing, promoting the 
intelligent, green, and digital development of modern 
service industries, while maintaining overall stability in 
manufacturing. There should be a substantial effort to 
foster high-tech and strategic emerging industries, 
especially in the green sector, with a strong emphasis on 
energy conservation, emissions reduction, and low-carbon 
emissions. At the same time, government should promote 
the high-quality development of modern service industries 
to act as a catalyst for further green innovation in the 
renewable energy sector.
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