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1. Introduction

Electricity demand has increased with urbanization and 
electrification (Cao et al., 2023; Santamouris et al., 2015; 
G. Zhang et al., 2023; M. Zhang et al., 2021). This 
demand is shaped by a variety of factors, including 
economic activity, population growth, and climatic 
conditions. Among these, temperature stands out as a 
critical determinant, as it drives the need to regulate 
indoor environments in response to ambient temperature. 
This dynamic has become increasingly significant in the 
context of the climate crisis, which intensifies the 
variability of weather phenomena. South Korea’s heavy 

reliance on fossil fuel-based power generation underscores 
the critical need for effective electricity demand 
management. As the challenges posed by the climate 
crisis intensify, managing electricity demand plays a 
pivotal role in fostering sustainable development and 
mitigating environmental impacts. 

To analyze electricity demand for heating and cooling 
purposes, it is essential to focus on the electricity 
consumption of buildings where daily human activities 
occur. In South Korea, electricity services are categorized 
into six distinct sectors: residential, general, industrial, 
educational, agricultural, and street lighting. This study 
primarily investigates residential and general electricity 
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This study examines the nonlinear effects of temperature on electricity demand in the residential and general services 
sectors. Using a panel threshold fixed-effects model, it identifies temperature thresholds that define distinct consumption 
regimes: 19.76°C and 24.10°C for residential service, and 3.61°C and 19.73°C for general service. The second threshold, 
which marks a turning point for heating and cooling demand, is lower for general service than for residential service. This 
reflects distinct space-use patterns that necessitate earlier cooling in commercial environments. Seasonal analyses reveal distinct 
thresholds: 24.10°C and 27.54°C for residential service and 25.66°C for general service in summer, and -3.02°C for residential 
service with -1.7°C and -2.61°C for general service in winter. During summer, electricity consumption for both types increases 
across all temperature regimes due to higher cooling demand, while in winter, consumption decreases as rising temperatures 
reduce heating demand. This study contributes to the literature by investigating both residential and general electricity services, 
which are both closely related to daily life, and by estimating endogenous temperature thresholds. The findings provide 
empirical evidence for policymakers in the energy sector to develop sustainable demand-side management strategies. While 
this study exploits monthly data, future research should leverage micro-level data (e.g., daily or hourly) to further elucidate 
the relationship between temperature and electricity consumption, offering more detailed insights for sustainable energy policy.
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consumption1). Residential electricity service is provided 
to various types of housing, including apartments, 
dormitory-style residences for unmarried individuals, and 
group home facilities for social welfare purposes. General 
service refers to electricity consumption by customers 
who are not classified into any of the five other service 
categories and is primarily used in stores and offices. 

Given their close connection to daily life, these two 
consumption categories are expected to exhibit unique 
patterns of variation in response to temperature changes. 
The existing literature predominantly focuses on 
residential electricity consumption and often relies on 
exogenously determined threshold temperatures for 
analysis. This study analyzes both residential and general 
electricity consumption, allowing for the endogenous 
determination of threshold temperatures within the model. 
The primary objective of this research is to identify 
temperature thresholds that adjust the effects of 
regime-dependent variables closely linked to daily 
activities on electricity consumption. 

This study employs a panel threshold fixed-effects 
model to endogenously estimate temperature thresholds 
for electricity demand in South Korea, using panel data 
from 2013 to 2022. By examining the nonlinear 
temperature effects, the study provides a better 
understanding of the relationship between temperature and 
electricity consumption across the country.

This paper is organized as follows. Section 2 reviews 
the relevant literature, highlighting key findings and gaps 
that motivate this study. Section 3 provides an overview 
of the data sources and variables used in this study, while 
Section 4 details the analytical methods and modeling 
framework. Section 5 presents and interprets the findings, 
and Section 6 concludes with key implications.

2. Literature Review

Extensive research has delved into the relationship 

between temperature and electricity consumption, 
emphasizing the regional and sectoral differences (Bessec 
and Fouquau, 2008; Cao et al., 2023; Deschênes and 
Greenstone, 2011; Santamouris et al., 2015; C. Zhang et 
al., 2019; G. Zhang et al., 2023; M. Zhang et al., 2021). 
This relationship has been primarily analyzed through 
three main approaches: incorporating temperature as a 
variable in models, segmenting temperatures into 
exogenously defined bins, or utilizing indices such as 
HDD (Heating Degree Days) and CDD (Cooling Degree 
Days) based on predetermined thresholds. When 
temperature data is directly included (C. Zhang et al., 
2019), arbitrarily divided into bins (Deschênes and 
Greenstone, 2011), or when indices like CDD and HDD 
are the main explanatory variables (M. Zhang et al., 
2021), fixed-effects models have often been used to 
estimate the marginal effects of temperature on electricity 
consumption. These studies also employ spline functions 
to construct temperature-electricity response curves and 
analyze urban-rural inequalities using temperature bins (G. 
Zhang et al., 2023). 

Although panel fixed-effects models effectively control 
for time-invariant factors and regional heterogeneity, they 
fall short in capturing nonlinear effects. Indices such as 
CDD and HDD, while useful, simplify the dynamics by 
using a single baseline temperature that is exogenously 
determined.

Previous research has consistently identified nonlinear 
patterns, such as V-shape, U-shape, or J-shape 
relationships (Bessec and Fouquau, 2008; Cao et al., 
2023; Deschênes and Greenstone, 2011; Moral-Carcedo 
and Vicéns-Otero, 2005). For instance, Bessec and 
Fouquau (2008) used the Panel Smooth Transition 
Regression (PSTR) method to analyze U-shaped nonlinear 
relationships in European countries. Similarly, 
Moral-Carcedo and Vicéns-Otero (2005) employed 
Logistic Smooth Transition Regression (LSTR) to identify 
a U-shape relationship in Spain’s daily electricity 

1) Educational electricity refers to the electricity consumed by educational institutions, including primary and secondary schools as well as 
universities. Although educational electricity is closely linked to the daily activities of students and teachers, significant differences in 
operating hours, facilities, and scales among institutions render it challenging to analyze consistently. Therefore, this study excludes 
educational electricity from its analysis. 
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consumption. Deschênes and Greenstone (2011) 
confirmed a U-shape using temperature bins and 
fixed-effects models, while Cao et al. (2023) applied 
segmented regression to determine threshold temperatures 
for different sectors. 

In South Korea, Shin and Jo (2014) examined the 
relationship between temperature and electricity 
consumption using daily maximum electricity data. The 
study utilized nonlinear models such as Markov regime 
switching, threshold regression, and smooth transition 
regression to assess the cumulative temperature effect. 
They identified a critical temperature range of 17 ~ 23℃, 
with different thresholds for different models. However, 
they did not differentiate by service type and used 
national electricity consumption, which lacks spatial and 
service type heterogeneity.

Building upon these findings, this study employs an 
endogenous estimation approach to address unobserved 
time-invariant characteristics by employing a threshold 
regression model developed by Hansen (1999). The 
bootstrapping method for estimating multiple thresholds 
proposed by Wang (2015) has been implemented in Stata, 
which has yet to be applied to analyze 
temperature-electricity relationships. 

Compared to exogenous temperature bin methods or 
predetermined thresholds approach like HDD or CDD, the 
panel fixed-effects threshold model has strength in 
identifying temperature thresholds endogenously in the 
model. This approach also improves upon the work of 
Shin and Jo (2014), which included industrial, 
educational, agricultural, and street lighting electricity 
usage without accounting for unobserved spatial and 
time-invariant heterogeneity. By focusing on residential 
and general electricity consumption and utilizing sales 
data from Korea Electric Power Corporation (KEPCO), 
this study captures cooling and heating demands directly 
tied to everyday life.

3. Data

This study utilizes two primary datasets from South 
Korea: electricity consumption categorized by service type 
and weather observation data. Monthly electricity 
consumption data were obtained from the Electric Power 
Data Open Portal System (2024), managed by the K
EPCO. KEPCO disclosed this data including nationwide 
information on the number of customers, sales volume, 
and sales charges by region, month, and contract type. 
Data from regions with fewer than five customers were 
removed prior to discloser to protect personal information. 
The average number of residential electricity customers 
showed an increasing trend from 2013 to 2022, starting at 
approximately 12.6 million in 2013 and reaching 14.4 
million in 2022. Similarly, the average number of general 
electricity customers consistently grew from around 2.5 
million in 2013 to nearly 3.0 million in 2022.

Electricity consumption data was processed differently 
for each sector to account for variations in usage patterns. 
Residential electricity consumption was calculated by 
dividing the total monthly electricity consumption at the 
sigungu level by the number of customers2), reflecting its 
direct connection to individual customers’ daily lives. In 
contrast, monthly general electricity consumption at the 
sigungu level was divided by the sigungu’s population. 
This approach considers that the general electricity 
consumption mostly occurs in offices and stores, where 
the size of population is a primary determinant of 
electricity demand. 

Weather data were sourced from the Korean 
Meteorological Administration (2024), including key 
variables such as monthly average temperature (°C), 
monthly average relative humidity (%), and monthly total 
precipitation. In this study, temperature is employed as an 
explanatory variable, as it is well known as a key factor 
influencing electricity consumption. Relative humidity and 

2) In the context of residential electricity consumption, the number of customers refers to the contractual unit for billing purposes and 
does not necessarily correspond to individual households. For example, in an apartment complex, electricity may be supplied under a 
single contract, with the entire complex treated as a single customer. In such cases, electricity charges are allocated to individual units 
based on their respective consumption. Therefore, in this study, the term “monthly electricity consumption per customer” is more 
precise than “monthly electricity consumption per household”.
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precipitation, which are closely related to temperature. are 
often used as control variables in the literature when 
analyzing the effects of temperature on residential electricity 
consumption (G. Zhang et al., 2023; M. Zhang et al., 2021). 
Accordingly, this study includes relative humidity and 
precipitation as control variables in the model to examine 
both residential and general electricity consumption. Both 
factors are closely associated with electricity consumption in 
buildings, as relative humidity affects the apparent 
temperature perceived by individuals, while precipitation 
influences people’s decisions between indoor and outdoor 
activities. These variables were aggregated at the sigungu 
level and combined with electricity consumption data for 
analysis.

The dataset used for the analysis was constructed by 
combining monthly sigungu-level customer counts and 
electricity sales from 2013 to 2022 with annual 
sigungu-level population administrative data and monthly 
meteorological data. Figure 1 depicts the relationship 
between average temperature and monthly electricity 
consumption across the two service types: residential (Fig. 
1(a).) and general service (Fig. 1(b).).

The scatter plots include all observed values at the 
sigungu levels from 2013 to 2022, capturing outliers. The 
top plot illustrates the relationship between monthly 
average temperature and monthly electricity consumption. 
Monthly residential electricity consumption per customer 
displays a weak U-shaped pattern, with usage increasing 

at temperatures above 20°C. For monthly general 
electricity consumption per capita, the U-shaped pattern is 
more pronounced, with consumption decreasing at 
temperatures below 10°C and increasing above 20°C. 
Despite the noise in the data, the weak U-shaped patterns 
observed in residential and general electricity 
consumption indicate the potential existence of one or 
more thresholds that significantly affect electricity usage. 

Summary statistics are shown in Table 1. For 
residential service, monthly electricity consumption peaks 
in August at 470 kWh, corresponding to high temperature 
(25.7°C) and relative humidity levels (80.6%). The lowest 
monthly consumption occurs in May at 341 kWh, during 
moderate temperature (17.8°C). For general service, 
consumption also peaks in January at 233 kWh, reflecting 
high temperatures and relative humidity. The lowest 
consumption is observed in May at 167 kWh, during 
milder weather. General service consumption shows 
relatively smaller seasonal variation compared with 
residential service. 

The analysis period (2013 ~ 2022) is consistent across 
both service types, but the summary statistics of weather 
variables exhibit slight differences. This discrepancy 
arises due to the unequal dataset sizes: 223 sigungu with 
a total of 26,760 observations for residential electricity 
consumption and 212 sigungu with a total of 25,440 
observations for general electricity consumption. Since the 
panel fixed-effect threshold model employed in this study 

(a) Residential Service (b) General Service

Fig. 1. Scatter plots showing the relationship between temperature and monthly electricity consumption by 

service type
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requires a balanced panel for analysis3), some data were 
excluded to construct a balanced panel for each service 
type on a monthly basis throughout the analysis period.

4. Method

This study employs a panel threshold fixed-effects 
model to explore nonlinear relationships between weather 
variables and electricity consumption. Originally 

developed by Hansen (1999), the model estimates 
threshold effects in non-dynamic panel data while 
accounting for individual fixed effects. By minimizing the 
residual sum of squares, it endogenously identifies 
thresholds and regression coefficients, allowing for the 
detection of regime shifts. The analysis begins with 
cross-sectional dependency and unit roots tests to validate 
the panel model. Observations are categorized into distinct 
regimes based on the threshold variable, with regression 

3) It is necessary to apply panel fixed effects model using ‘xthreg’ package in Stata.

Panel A. Residential service 

Month Mean Std. Min Max Temperature (°C) Relative humidity (%) Precipitation (mm)

Jan 409 244 162 2589 -0.885 61.8 20.6

Feb 406 240 158 2544 1.21 59.5 29.6

Mar 356 213 139 2208 7.05 61.4 57.2

Apr 366 220 149 2345 12.4 61.3 82.5

May 341 206 134 2193 17.8 65 82.7

Jun 348 215 132 2209 22 73.8 113

Jul 377 241 138 2259 25.3 81.3 261

Aug 470 303 164 3117 25.7 80.6 247

Sep 404 253 156 2731 20.9 77.2 138

Oct 342 208 132 2102 14.6 72.8 80.8

Nov 359 216 130 2185 8 69.4 57.4

Dec 377 225 145 2233 0.645 64.1 24.2

Panel B. General service

Month Mean Std. Min Max Temperature (°C) Relative humidity (%) Precipitation (mm)

Jan 233 140 89 1474 -0.977 61.9 20.3

Feb 225 130 87 1366 1.13 59.6 29.4

Mar 191 113 74 1217 6.99 61.5 56.7

Apr 179 104 71 1166 12.4 61.2 81.7

May 167 103 66 1167 17.8 64.9 83.5

Jun 179 115 73 1345 22 73.7 113

Jul 201 133 81 1503 25.3 81.2 263

Aug 230 148 93 1691 25.7 80.6 249

Sep 201 123 17 1386 20.8 77.2 137

Oct 170 105 0 1176 14.5 72.8 79.7

Nov 178 108 0 1149 7.93 69.4 57.8

Dec 210 130 0 1351 0.555 64.3 24.2

Note: For residential service (panel A), the mean, standard deviation (std.), minimum (min.), and maximum (max.) represent the summary 
statistics of monthly electricity consumption per customer (kWh). For general service (panel B), the mean, standard deviation (std.), 
minimum (min.), and maximum (max.) represent the summary statistics of monthly electricity consumption per capita (kWh).

Table 1. Summary statistics
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coefficients varying across these regimes. When the 
threshold variable exceeds a certain value, the relationship 
between the dependent and independent variables changes, 
indicating a regime shift. To ensure more precise 
estimations, fixed-effects transformations are applied to 
control for unobserved individual characteristics, 
effectively addressing heterogeneity within the panel 
dataset. The basic model, assuming a single threshold, is 
introduced as follows:

    ≤ 〉ϵ  (1)

The subscripts i and t represent individual sigungu 
and year-month, respectively.  is a vector of 
regime-dependent independent weather variables, which 
includes monthly average temperature, monthly average 
relative humidity, and monthly total precipitation. The 
threshold variable,  represents the monthly average 

temperature, and  denotes the estimated threshold value 
at which regime shifts occur.  ∙ is an indicator 
function, where the second term on the right-hand side 
represents the regression coefficient when the threshold 
variable is smaller than the estimated threshold, and the 
third term represents the regression coefficient when the 
threshold variable exceeds the estimated threshold. The 
final term on the right-hand side is the error term.

The vector  must consist of time-varying variables, 
and the error term is assumed to satisfy the assumptions 
of being independently and identically distributed with a 
mean of zero and finite variance (Hansen, 1999). In cases 

where there are two thresholds, the model partitions the 
data into three distinct regimes. The corresponding 
specification for the model in such cases is specified as 
follows:

    ≤ 〈 ≤ 
     〉ϵ  (2)

When three thresholds are present, the model divides 
the data into four regimes, and the model specification 
can be expressed as follows: 

    ≤ 〈 ≤ 
     〈 ≤ 〉ϵ (3)

In the next section, the number of thresholds will be 
endogenously determined by testing for threshold effects. 

5. Results

5.1. Cross-Sectional Dependency and Unit 

Root Testing

To analyze panel data, it is essential to assess 
cross-sectional dependency (Pesaran, 2021). The R 
package ‘plm’ was used to conduct cross-sectional 
dependence tests for panel models in each dataset. Table 
2 reports the results of these tests. The null hypothesis 
assumes no cross-sectional dependence, while the 
alternative hypothesis indicates the presence of 

Type Variable CD statistic

Residential

Monthly electricity consumption per customer 1333.9***

Monthly average temperature 1716.7***

Monthly average relative humidity 1377.5***

Monthly total precipitation 1262.5***

General

Monthly electricity consumption per capita 1276.4***

Monthly average temperature 1632.1***

Monthly average relative humidity 1316.0***

Monthly total precipitation 1207.6***

Notes: Statistical significance levels are indicated as ***, **, and * for the 1%, 5%, and 10% levels, respectively. 

Table 2. Results of cross-sectional dependency tests
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dependency among cross-sectional units.
The cross-sectional dependency test statistics for all 

types and variables are high, strongly rejecting the null 
hypothesis with a high level of confidence. This indicates 
that observations across different sigungu are 
interconnected, likely due to shared climatic conditions or 
economic factors. Consequently, cross-sectional 
dependency needs to be accounted for in unit root testing. 
Given that the datasets are panel and exhibit 
cross-sectional dependence, the cross-sectionally 
augmented IPS (CIPS) test is the appropriate method for 
assessing stationarity (Pesaran, 2007). The analysis was 
conducted using the ‘bootUR’ package in R, which 
applies a bootstrap-based unit root test (Smeekes and 
Wilms, 2023). The results are presented in Table 3.

Table 3 presents the results of the unit root tests 
conducted to evaluate the stationarity of variables across 
the residential and general services. The null hypothesis 
assumes that all series in the panel data contain unit roots 

and are therefore non-stationary, while the alternative 
hypothesis posits that at least some series in the panel are 
stationary. The test statistics and corresponding p-values 
strongly reject the null hypothesis, indicating that the 
datasets are stationary. This confirms their suitability for 
further econometric analysis without requiring additional 
transformations, such as differencing. 

5.2. Testing for Threshold Effects

Threshold effect tests were conducted to determine the 
appropriate number of thresholds for each dataset using 
‘xthreg’ package in StataSE 18. Using monthly average 
temperature as the threshold variable, the analysis began 
with the assumption of a triple-threshold model. The null 
hypothesis for the triple-threshold model posits that no 
triple-threshold effect exists, implying that a 
double-threshold model sufficiently explains the data. The 
results of the threshold effect tests are summarized in 
Table 4.

4) Summer is defined as the months of June, July, and August for each year.
5) Winter is defined as the months of January, February, and December for each year.

Type Variable test statistic

Residential

Monthly electricity consumption per customer -3.34***

Monthly average temperature -2.19***

Monthly average relative humidity -2.25***

Monthly total precipitation -1.83***

General

Monthly electricity consumption per capita -2.44***

Monthly average temperature -2.14***

Monthly average relative humidity -2.20***

Monthly total precipitation -1.72***

Notes: Statistical significance levels are indicated as ***, **, and * for the 1%, 5%, and 10% levels, respectively.

Table 4. Results of threshold effect tests

Type Thresholds Year-round Summer4) Winter5)

Residential

Single 5044.6*** 325.4*** 39.7*

Double 1328.3*** 71.93*** 22.2

Triple 241.6 47.82 9.0

General

Single 6754.2*** 54.9** 203.3***

Double 1035.0*** 26.6 48.9*

Triple 756.8 21.48 14.5
Notes: Statistical significance levels are indicated as ***, **, and * for the 1%, 5%, and 10% levels, respectively.

Table 3. Results of unit root tests
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The thresholds effect tests for the triple-threshold 
models fail to reject the null hypothesis, indicating no 
evidence for the existence of a third threshold. The results 
suggest that the triple-threshold models are not 
statistically significant for both residential and general 
services. The double threshold models are supported for 
year-round residential and general services, residential 
service during summer and general service during winter. 

Single threshold models are supported for residential 
service during winter and general service during summer. 
Table 5 presents the threshold estimates of monthly 
average temperature for residential and general electricity 
consumption across year-round, summer, and winter 
seasons.

Type Thresholds Year-round (℃) Summer (℃) Winter (℃)

Residential
First 19.76 24.10 -3.02

Second 24.10 27.54

General
First 3.61 25.66 -1.70

Second 19.73 -2.61

Table 6. Regression estimates from the panel threshold fixed-effects model

Panel A. Residential Service Type

Variable Regime
Year-round Summer Winter

Coef. S.E. Coef. S.E. Coef. S.E.

Temperature
MAT ≤ First -3.04*** 0.07 6.42*** 1.10 -1.78 1.42

First ≤ MAT <Second -2.83*** 0.32 17.22*** 1.02 -3.05*** 0.34
MAT ≥ Second 11.76*** 0.35 24.01*** 1.90

Relative humidity
MAT ≤ First 0.05 0.05 2.03*** 0.23 -0.65*** 0.13

First ≤ MAT <Second 0.52*** 0.10 -1.09*** 0.25 -0.66*** 0.09
MAT ≥ Second -3.56*** 0.12 -3.77*** 0.68

Precipitation
MAT ≤ First 0.02** 0.01 0.01 0.01 0.69*** 0.13

First ≤ MAT <Second 0.06*** 0.01 0.05*** 0.01 0.01 0.03
MAT ≥ Second 0.09*** 0.01 0.24*** 0.04

Constant 389.16*** 3.27 55.44** 27.60 438.91*** 5.14

Panel B. General Service Type

Variable Regime
Year-round Summer Winter

Coef. S.E. Coef. S.E. Coef. S.E.

Temperature
MAT ≤ First -6.31*** 0.21 8.10*** 0.39 -5.14*** 0.88

First ≤ MAT <Second -1.65*** 0.07 9.86*** 0.45 -4.26*** 0.71
MAT ≥ Second 3.35*** 0.13 -1.97*** 0.44

Relative humidity
MAT ≤ First 0.19*** 0.04 0.08 0.11 -1.36*** 0.08

First ≤ MAT <Second -0.25*** 0.03 -0.40*** 0.14 -1.45*** 0.07
MAT ≥ Second -1.29*** 0.05 -1.53*** 0.07

Precipitation
MAT ≤ First -0.10*** 0.03 0.04*** 0.00 -0.86*** 0.08

First ≤ MAT <Second 0.03*** 0.01 0.01 0.01 -0.20*** 0.04
MAT ≥ Second 0.07*** 0.00 0.13*** 0.02

Constant 212.24*** 2.11 -9.50 10.13 312.61*** 3.87

Notes: Statistical significance levels are indicated as ***, **, and * for the 1%, 5%, and 10% levels, respectively. “MAT” stands for Monthly
Average Temperature. “First” and “Second” refer to the respective first and second thresholds used in the analysis. 

Table 5. Threshold estimates by service type
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5.3. Estimation of Panel Threshold Fixed- 

Effects Models

Table 6 presents the regression estimates from the 
panel threshold fixed-effects model, detailing the impacts 
of monthly average temperature, monthly average relative 
humidity, and monthly total precipitation on electricity 
consumption across different temperature regimes and 
seasons for residential and general service types. 

Year-round data indicate that electricity consumption 
increases beyond the second thresholds for both 
residential (24.10℃) and general electricity (19.73℃). 
During summer, residential electricity consumption rises 
significantly at 24.10℃ and again at 27.54℃, while 
general electricity consumption shows a marked increase 
above 25.66℃. In winter, residential electricity 
consumption decreases below -3.02℃, and general 
electricity consumption declines at two thresholds: -1.70℃ 

and -2.61℃. Overall, electricity consumption for both 
residential and general service types increase consistently 
across all temperature regimes, reflecting heightened 
cooling demand during warmer periods. Conversely, 
during winter electricity consumption for both types 
decreases across all temperature thresholds, driven by 
reduced heating demand as temperature rise. 

Year-round data show differing patterns in the effects 
of relative humidity and precipitation on electricity 
consumption for residential and general service types. For 
relative humidity, residential electricity consumption 
shows a modest positive effect in first and second regimes 
but becomes significantly negative in the highest regime 
(above 24.10℃). In contrast, general electricity 
consumption exhibits a small positive effect in the lowest 
regime but becomes negative across all other regimes. 
Precipitation generally has a consistent, positive effect on 
residential electricity consumption, with coefficients 
increasing across regimes year-round. However, general 
electricity consumption shows mixed effects, showing 
negative effects in lower regimes and positive impacts in 
higher regimes.

6. Conclusions and Discussions

This study examines the nonlinear effects of monthly 
average temperature on monthly electricity consumption 
across residential and general sectors in South Korea. 
Using a panel threshold fixed-effects model, the analysis 
identifies temperature thresholds that define distinct 
electricity consumption regimes. These empirical findings 
demonstrate that the threshold temperatures, as well as the 
magnitude and signs of regression coefficients, vary 
depending on electricity service type and season when 
analyzing the impact of temperature on electricity 
consumption.

In the year-round analysis, the first threshold for 
monthly residential electricity consumption was estimated 
at 19.76℃, while the second threshold for monthly 
general electricity consumption was 19.73℃. Existing 
literatures have shown that when applying temperature 
bins in the study conducted in the U.S., the 50-60°F bin 
was selected as the reference level in the regression 
model (Deschênes and Greenstone, 2011), whereas 18℃ 

was commonly used as base temperature for defining low 
and high-temperature when employing HDD or CDD (M. 
Zhang et al., 2021). These findings suggest that the 
estimated temperature thresholds at which electricity 
consumption patterns change are closely aligned with the 
exogenous thresholds adopted in previous literature.

For both service types, a transition in demand was 
observed: monthly electricity consumption exhibited 
positive temperature effects when temperatures exceeded 
the second threshold, whereas negative effects were 
observed when temperatures were below this threshold. 
Therefore, the analysis suggests that using a single base 
temperature of 18℃ is not reliable to indicate transition 
from heating to cooling electricity demand for residential 
service. Rather, using a distinct base temperatures for 
CDD at 26℃, which is closer to the second threshold of 
24.10℃, is more accurate as seen in the case of China (G. 
Zhang et al., 2023)

The second threshold for residential service was 24.1
0℃, while for general service, it was 19.73℃, indicating 
that the temperature at which electricity demand begins to 
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increase is lower for general service than for residential 
service. The difference can be attributed to variations in 
purpose of space use by service type. Residential service 
applies to living spaces where individuals directly pay the 
electricity bills for cooling. As a result, customers may 
hesitate to use cooling appliances until higher 
temperatures to reduce the bills. In contrast, general 
service is primarily used in offices and commercial 
spaces, where a larger number of people occupy the same 
area, frequently use heat-generating equipment such as 
lighting and computers, and move in and out more 
frequently. These factors make it more challenging to 
maintain a stable indoor temperature. Consequently, 
cooling systems for general service are more likely to be 
activated at lower temperatures than for residential service 
to ensure a comfortable working environment and 
enhance convenience.

By identifying endogenous temperature thresholds and 
heterogeneous regimes, this study provides a deeper 
understanding of the conditions under which electricity 
consumption responds to temperature variations. The 
findings suggest several policy implications. First, energy 
pricing policies should be established based on robust 
empirical evidence to more effectively manage demand 
and promote sustainable energy consumption. For 
instance, residential electricity pricing in South Korea has 
often been influenced by political considerations rather 
than scientific data analysis. Second, understanding the 
heterogeneous effects of temperature on electricity 
consumption by service type provides insights for 
infrastructure investment and resource allocation. Third, 
such research has a potential to develop more sustainable 
energy planning strategies. This can be achieved by 
integrating household or customer-level socio-economic 
data with climate scenarios to project future energy 
demand.

This study uses nationwide, monthly data spanning a 
10-year period at the sigungu level, providing a sufficient 
time scale for a panel fixed-effects model. Nevertheless, 
it should be noted that hourly or daily level data can 
better capture the effects of temperature variations on 
electricity demand. Given the close relationship between 

residential and general services and daily life, micro-level 
data can offer more valuable insights in establishing 
demand-side management strategies.
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